Codes for Distributed Computing: A Tutorial

This article is based on the maternial presented in g tutorial in the
2017 IEEE International Symposium on Information 1, oy (IS
Aachen Germany i June 2007 We wnite this article 1y o parts
that murror the structure of the tutorial prosented 1y 14 Lirst we
focus on Jutred memony endation a classieal Problem i the anea
of dih“’]l‘lllt'\i computing (60, 91 We pive a tutongl hhe overyjen
of shared memorn emulation and its applications, and then de
seribe reler ant coding-theoretic formulations, The high level poal
of shared memory emulation s to bunld algonthme that expose
distrihulvd data storage system with certam desirable pProperties
to external chients. Our descnipion mav theretore be viewed as a
transition trom the area of "t‘dl_‘* tor distnibuted storage, where
algorithmic aspects can often be ignored in coding-related studies,
lo‘dislrilvulmi mm}*uungl, where algorithmic aspects play a central
role in pmblwu formulation and solutions,

Gecond, We dt‘:‘t‘l:l'l’&‘ how .t‘O\‘]L‘:-'- can be used to perform reliable
computations using unreliable processing elements. Just as so-
Phislic.m‘d ormr-mm_‘ch_nn "‘\'h"“]“l‘h‘ th‘.u achieve the Shannon
Cd}mfity have n‘\'ﬂlutmn.l/vd mmlmumc‘.llmn on unreliable chan-
nels, use of ermr.?-nrr&-ctmn twhmqm_-.s in computing has the po-
tcnﬁﬂl to n‘\'nlm?mnz}‘ n.cxl generation computing systems. In
fact, techniques of replication and error-correction have been used
in computing for decades now. In the last few years, information-
theory community h:xs‘ contributed significantly to both funda-
mental limits and s‘l(‘hlp‘\“]b]L‘ strategies in this area. The purpose of
this section is to put this rc.ccnt information-theoretic work in the
broader historical .perspcclhw of tlhe areq, and utilize that to sug-
gest intellectually interesting and important research directions.

We admit that our goal is to not be comprehensive, Instead, this ar-
ticle is intended for graduate students and researchers interested
in the area to learn about some of the key ideas, and is by its nature
piased by our own interests and perspectives.

1, Part I: Shared Memory Emulation

il Introduction

A read/write memory admits two operations: write(variablenant.e,
oalue) and read(variablename). The goal of the readfwrite shared
eniory emulation problem is to implement a shared read/write
memory over a distributed system of processing nodes (Fig. 1).
For simplicity', we focus here on a single variable and omit the
pariablename parameter. When the same read/write memory is
concurrently accessed by multiple client nodes—possibly to jointly
run some application or perform some task—it is usually referred
to as a shared memory.

P
1A reader familiar with distributed systems theory will note that there

can be a significant loss of generality in studying just a single variable, in
particular, in systems that are not atomic. Specifically, consistency crite-
ria weaker than atomicity are not “composable”, so the study of a single
variable may not suffice from an algorithmic viewpoint, nonetheless, our
description here is restricted to atomic variables and therefore focusing
on single variable suffices.
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In consistent data storage services, the speed of access to data is
critical, and therefore such data is commonly cached in relatively
expensive high speed memory (RAM or solid state devices), and
flushed to the magnetic disks, which is a less expensive, slower
medium, only in the case of memory overflow. While data replica-
tion is often used in practice to provide fault tolerance, motivated
by the need to use memory in the most efficient way possible,
erasure coding based algorithms to provide consistent distributed
storage services have been studied in the distributed computing
theory and systems research communities [42, 27, 15, 16, 25,53, 52,
71, 96, 20]. The use of erasure coding for such applications poses
interesting challenges and research opportunities in information
and coding theory, distributed algorithms, and optimization. We
first describe some of the key cancepts of shared memory emu-
lation. We then describe an information theoretic framework to
study the problem, and conclude with open directions of research.

1.2. The Shared Memory Emulation Problem

In this section, we first describe a distributed systems model, and
then explain the concept of consistency. We then provide high
level descriptions of the shared memory emulation problem and
its solutions, where we explain some of the challenges of erasure
coding based shared memory emulation.

1.2.1. Distributed Systems Model
The shared memory emulation problem consists of client nodes
and server nodes, where the clients nodes may be partitioned

in to read and write clients (See Fig. 2). Write clients issue write
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Figure 2. System model.
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Figure 3. A typical execution of an ideal read-write memory.

operations, and read clients issue read operations’. We assume
that there is a system with N server nodes and an arbitrary num-
ber of client nodes. The maximum number of server nodes that fail
is f. The following assumptions distinguish the shared memory
emulation model from commonly studied models of distributed
storage systems in information theory research.

Al—Arbitrary Asynchrony: The nodes are all connected by (logi-
cal) point-to-point links® and the topology is assumed to be known
to all nodes. The point-to-point links are themselves thought of
as asynchronous links which are reliable, but their delay can be
arbitrary and unbounded.

A2—Nodes are computing devices: The nodes are not merely
storage devices but they are computing devices, and can therefore
be used to execute fairly complex, interactive, protocols.

A3—Decentralized Nature: A node is unaware of the current state
of any other node, and a node’s knowledge of the state of another
node is limited to what it can learn from the messages it receives
on the incoming links.

In a system with N servers, we aim to desi gn algorithms that operate
correctly so long as the number of server failures no larger than some
known threshold f. Note that because the system is asynchronous (as-
sumption A1), a failed node cannot be distinguished from a very slow
node; a node that does not obtain responses from another node cannot
figure out if that node has failed or the messages from the node may
simply be delayed. Furthermore, when a server node receives the up-
dated data from a write client, it is not automatically aware of whether
another node in the system has received this update yet. These aspects
can make correct distributed algorithm design in the above model
quite interesting and challenging. In practice, server nodes are typi-
cally in a cloud storage system, such as a data center, and client nodes
are external devices or proxy/leader nodes in the storage system car-
rying out operations on behalf of an external clients.

*The split between read and write clients is a logical split—they can be
physically be located on the same node.

"This system is often referred to as the message passing architecture.
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Figure 4. (a) Atomic executions: every operation “looks
like” it took place instantaneously at some point in its
Interval, (b) Executions that are not atomic: we cannot
place points in the intervals of operations and make the
execution look like that of a correct instantaneous
read-write memory,

Concept of atomic consistency: A typical execution of an ideal
shared read-write memory is presented in Fig. 3. However, the ex-
ecution of Fig. 3 is too idealistic to model in distributed systems,
specifically, read and write operations are seldom instantaneous,
but they take time. More specifically, the time scale of operation
completion is often comparable to the inter-arrival time of opera-
tions; therefore operations may overlap®,

In systems where operations can overlap (e.g. Fig. 4), it is necessary
to carefully define a set of rules that govern the possible outcomes of
the write and read operations: such rules are known as consistency re-
quirements. Consistency requirements are usually defined to ensure
that (a) they are sufficiently relaxed so that they can be implemented
in a realistic asynchronous distributed system, and (b) they are strict
enough such that the overall execution is, in some sense, indistin-
guishable from one that could have taken place over an instantaneous
read-write memory. For instance, an important requirement is that
a read operation obtains the latest (in some sense) write operation.
There are several formal ways of defining consistency, each of which
is useful depending on the system and applications using the system.
Here we give a high level explanation of an important consistency
requirement known as atomic consistency or simply atomicity [54]°.

An execution is said to be atomic if every operation of the execu-
tion “looks like” it took place at some point in the interval of the
operation. Examples of atomic executions are provided in Fig. 4a.
Note that in each execution of Fig. 4a, we can place points in the
interval of an operation such that, if we “shrink” the operation
to that point, the overall execution will look like a correct execu-

*Operation overlap can be avoided through protocols that implement a lock
on the system. However locks can make the system very slow [44], and a
service that allows for concurrent overlapping operations is desirable.

“Atomicity is also referred to as linearizability [44] or strong consistency.
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IleI‘l of an instantancous read- write memory. Note that the execu-
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ensure that the overall

1.2.2. Problem Statement and Solutions (Informal)

;E-:lt) 15;02: ?\f ,(;:Ll.“::g) r‘:i::{rﬂ] ::;:n:\r\i vm_ullalinﬁ is to design pro-

of S and servers so that the overall
execution is always atomic, and every read and write operations
eventually completes so long as the number of server milurv‘s is no
bigger than f7. There are several solutions to the shared mem
emulation problem as it is studied exte
engincc_ring rescarch. A well-known solution comes from |8]; a
reader interested in appreciating systems engineering aspucls‘ is
also encouraged to read [24]. While [8, 24] use replication for faul\l
tolerance, there is a rich literature in developing provably consis-
tent erasure coding based shared memory emulation al{;urilhms
(a non-exhaustive list is ([1, 42, 27,15, 16, 25, 52]), and also some
system implementations [20]. For the purposes of the discussion
here, we simply provide a high level understanding of the struc-
ture of typical shared memory emulation algorithms,

d memory
nsively in both theory and

In shared memory emulation algorithms (c.g., (8, 33)), w
tions send the new value to N server nodes
acknowledgements from ¢,

rite opera-
and wait until getting
v servers before completing the operation.
Similarly, a read operation sends a read request to all N servers and
waits for responses from at least cx nodes in the system before read-
ing/decoding the value. To tolerate fserver failures—that is, to ensure
that write and read operations complete even if f servers fail—it is re-
quired that cw, ¢k < N - f. For every pair of complete write and read
operations, there are at least ci + civ — N servers that received the value
of the write operation, and responded to the read operation. Thus, for
repetition based schemes [8, 24], where cach server simply stores the
latest version it receives in an uncoded form, choosing cx, ci so that cx
+cw > N, suffices to ensure that every read operation that begins after
a write operation completes will “see” the value of the write, or see a
later value. Indeed, in such algorithms, if ¢ + civ > N, the replication-
based protocols ensure atomic consistency. A natural extension of this
principle indicates that when a maximum distance separable (MDS)
code is used [42, 27, 16, 25|, the dimension of the erasure code is cho-
sen to be cx + cw = N. Thus, based on the structure of prior protocols,
the requirement of ensuring consistency can be expressed as follows®:

“In practice, systems are sometimes designed with weaker requirements as
compared with atomicity for the sake of better performance, i.e., faster
read/write operations, see for e.g, [83, 11, 63],

“This property is known as the non-blocking or wait-freedom, property,
since it also implies that overlapping operations must be able to proceed
without blocking each other.

*The reader may note from Fig. 4a that ensuring consistency is more com-
plex and involved than assumption A4, and requires careful protocol
design; however, for the sake of the discussion here, we simply use Adasa
proxy for the desired consistency criteria. Also, property A4 assumes that
there is some ordering of the writes/versions; protocols such as [8, 35] also
take steps to ensure a non-unique ordering of the write operations.
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Figure 5. Use of erasure coding for shared memory emu-
lation. The figure demonstrates why a server which
receives a new updated codeword symbol cannot sim-
ply replace the stored codeword symbol.

Ad—Consistency: The latest among all the versions that have
been propagated to at least cw servers, or a later version, must be
decodable from any set of cx servers.

Erasure coding presents interesting algorithmic and coding
challenges in asynchronous distributed systems where consis-
tency is important. This is because, when erasure coding is used,
no single server stores the data in its entirety; for instance, if
a maximum distance separable (MDS) code of dimension k is
used, each server only stores a fraction of 1/k of the entire value.
Therefore, for the read client (decoder) to decode some version
of the data, at least k servers must send the codeword symbols
corresponding to the same version. In particular, when a write
operation updates the data, a server cannot delete the old ver-
sion before ensuring that the new version has propagated to a
sufficient number of servers. As a consequence, servers cannot
simply store the latest version they receive; they have to store
older versions at least until a sufficient number of codeword
symbols corresponding to the newer version has been propa-
gated (See Fig. 5). In fact, in situations where there are multiple
concurrent writes, servers may have to store multiple codeword
symbols, one corresponding to each concurrent operation. In-
deed, the main algorithmic challenge of erasure coding based
shared memory emulation algorithms developed previously, is
to determine in a decentralized setting that a new version has
propagated to a sufficient number of servers before deleting
older versions [42, 27, 15, 16, 25, 53, 52, 15, 2, 1, 36]. Importantly
for our purposes, the fact that servers have to store multiple
versions can offsct the storage cost gains of erasure coding, es-
pecially when the degree of concurrency is high. Next we sum-
marize multi-version codes (87, 88, 89], which study the storage
cost of shared memory emulation from an information-theoretic
perspective.

1.3. A Coding Framework Related to Shared Memory
Emulation

We here describe a coding framework called multi-version cod-
ing that simplifies the shared memory emulation problem and
yet keeps its essential aspects that pertain to its storage cost.
Specifically, in addition to fault tolerance, the multi-version
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Figure 6. Summary of results of [89]1.

coding framework incorporates arbitrary asynchrony (A1), de-
centralized nature (A3) and consistency (Ad) as discussed in
Sections 1.2.1, 1.2.2. We will discuss modeling assumption (A2)
in Section 1.4. The multi-version coding problem is parame-
trized by positive integers 1, cw, cx, 0. There are n servers, and
there is a message/variable with v versions Wi, Wa, ..., W. The
versions are assumed to be totally ordered as Wi=< Wy < ... <
W.,, with a higher ordered message version being interpreted as
a more recent version as compared to a lower ordered version.
We model asynchrony (A1) as follows: Every server receives an
arbitrary subset of the versions (at one shot) and encodes the
received versions. More formally, let S, € 11,2,....,v} be the set
of versions received by the ith server. Let S=(5,....8); note
that & is an element in the power setof {1, 2,..., v)". We refer
to S, the state of server i, and S as the global state of the system.
Denoting S = {51, $2, ..., sw} the i-th server stores a codeword
symbol generated by an encoding function @¢'that takes an in-
put, (W., W.,...,,W.), and oulputs an element in @, where Q is
the alphabet of coding. Note that the decentralized nature (A3)
of the system is implicit in the model since server ‘s encoding
function ¢'¢' depends on S alone, and does not depend on the
the global state vector S.

Decoding Constraint: For any state S=(S8,,...,8:) we refer to a
message version that has propagated to at least cw servers as a
complete version. The server encoding functions @', i=1,2,...,1
have to be designed such that, the decoder must be able to recover
from any cx servers, the latest c omplete version as per the order-
ing <, or a later version. That is, a decoder must be able to decode,
from any cw servers, Wr where f 2 max |j: [[i:]€ Sil| = cw}.
The decoding constraint has been defined based on consistency
requirements (Ad).

Achievable schenes: With replication, the storage cost per server is
the size of one version. Now, suppose we aim to use an MDS code.
For a decoder that connects to cr servers, a complete version is
present at least cw + cx — 11 of those servers. So using a dimension of
cw +cr — 1 suffices for the decoder to decode the complete version.
Furthermore, note that storing simply the latest version at a server
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does not suffice, since from a server’s perspective, it is not aware
of which version s complete Theretore, a server has to store a
codeword symbol of a code of dimension o + G - n for cach
version it receives Inthe worst case, the storage cost per server
is (v cn 40 o) Inour prehmimary work, we have improved
upon the best of rephcation and erasure coding by varying the
dimension of the code used for the o versions Our results are de-
picted in Fig 6 Toappreaate the jappeed nature of the achievable
coheme, it can be verthed that cach server stonng simply the latest
] suffices. The converse depicted

ssapes 1 distribnted storage sys-

version with dimension | 77
in Fig. 6 carnes an mstruchive me
tems, i additon to fandt tolerance, there s an meoitable price to be pard
i1 terms of redwndancy overhead Lo muntam conststency. The converse
derivation is combinatorial in nature, discovering the worst-case
states that force a lower bound on the storage cost.

1.3.1. Where Do Classical Distributed Storage Erasure Codes Fit?

Classical erasure codes may be derived as a special case of mult-
version codes for o = 1. From a modeling pure-.pvcli\'v, th.h lmn-;]a?cs
to the system being synchronous, or completely centralized. For in-
stance, if the system is synchronous, then all non-failed servers re-
ceive each version completely. Then storing simply the latest version
with dimension cx code suffices for the decoder. Evenif the system s
asynchronous, i.e., a server receives an arbitrary subset of the v ver-
sions in the system, a centralized system where cach server knows
the global sy:;imn state Jeads to the classical erasure cufiin;; frame-
work. To sce this, observe that with global system state information,
each server is aware of the the latest complete version. Therefore,
a server with the latest complete version simply encodes it using a
code of dimension cw + ¢x = N and stores the corresponding code-
word symbol; a server that does not posses the latest common ver-
sion does not store any information. These examples show that new
coding ideas are required only when the model accounts for both the
asynchronous nature and decentralized nature of the system.

1.4. Extensions and Open Problems

Classical erasure codes for distributed storage may be interpreted
as an optimistic view of the system: it assumes that the system
is synchronous, and that nodes have instantaneous and global
system state information. In contrast, the multi-version coding
framework takes a pessimistic/conservative view of storage sys-
tems (Fig. 7). Specifically the model assumes that the system is
completely asynchronous, i.e., every version arrival pattern is pos-
sible; it also assumes that nodes do not have even stale or par-
tial information of system state. However, in practice, we expect
the system to operate somewhere in between these two extremes,
specifically nodes may be able to opportunistically obtain stale or
partial information of the system. This opens the door to many
important open questions that enable code constructions.

e The multi-version coding is a worst-case formulation,
where the decoding requirement as well as the storage cost
characterization applies to every possible state. An open
question is the potential storage cost reductions that may be
obtained by studying the average storage cost, and/or
allowing for a small probability of decoding error after
invoking an appropriate probability measure on the state
space.
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* In several settings, cither because of the topolo-
gy or the internal gossip messages exchanged
among the servers, servers obtain local
sibly stale side information (eg., a server may
know which server has some of the older ver-
sions) In the extreme case where server has
global and instantancous side information, the
system reverts back to the classical setling as
explained in Section 1.3.1. The question of how
to design codes that exploit stale or local side
information about the states, and a quantitative
lunderstnnding of the potential storage cost gains is a promis-
ing area of future work. .

and pos-

The lmulti-vcrsion coding setting assumes that the different
versions are independent. In some applications, subsequent
writes and reads tend to have correlations that can -bc
exploited to reduce the memory overhead in such applica-
tions. Our preliminary work [5] explores this direction and
derives achievable schemes and cha racterizes their storage
cost. However, questions related to optimality and practical
low complexity code constructions remain ()[:wn.

The second direction of open problems comes from understanding
and developing connections between distributed computing systems
and multi-version codes. We describe some of them briefly here.

* Inour recent work [17], we have proved formal information
theoretic lower bounds on the shared memory emulation
problem inspired by converse results for the multi-version
coding framework. Specifically, the result of [17] shows that
the multi-version coding converse applies to the general
shared memory emulation problem when v = 2, and for non-
interactive protocols when v > 2. It is not known whether
interactive protocols can improve upon the storage cost of
multi-version coding—the reason for this gap in under-
standing is that multi-version coding does not capture
assumption A2 in Section 1.2.1 very well. While studying
this question in the context of the general shared memory
emulation problem might be challenging, a possible starting
point is by making the toy model of [89] interactive.

 The shared memory emulation problem is a special case of
the general replicated state machiie [60, 9] problem in distrib-
uted computing, where the goal is to emulate an arbitrary
state machine in a distributed asynchronous system in a
fault tolerant manner. The replicated state machine problem
is much more complicated than the shared memory emula-
tion problem, and is an object of extensive study in distrib-
uted systems literature. Like shared memory emulation,
solutions to the replicated state machine problem—for spe-
cific state machines—form the basis of several cloud based
services (e.g., Google Spanner [21]). However, the question of
how to encode state machines is not yet well studied by
either the distributed systems or the coding theory commu-
nities. A good starting point is in reference [12], which gen-
eralizes basic coding theoretic concepts such as the
Hamming distance to replicated state machines.

In addition to the above mentioned extension and open problems,
a deeper understanding of the system from a networking and re-
source allocation viewpoint, which can guide an engineer on how

December 2017

Classical Codes for
Distributed Storage

System is synchronous, Nodes
have instantaneous, global system
state information

Figure 7. Open areas of research.

‘E’ Multi-Version Codes

System is asynchronous, and
nodes have do not even have

Open dor .
Research stale or partial information of
Directions system state

to choose coding parameters such as the length, dimension, and
the extent of history to be stored, based on the total storage budget,
frequency of updates, the degree of asynchrony, and other system
level parameters is a broadly open and important area of research.

2. Part II: Coding for Distributed Computing
Using Unreliable Components: Errors, Faults,
Stragglers

The roots of computing using unreliable components go as far back
as work of von Neumann in 1956 to a work [84]. He considers a
problem where each gate is unreliable, and provides replication-
type strategies with repeated majority decoding make the overall
computation reliable. von Neumann’s work was inspired both by
Shannon’s 1948 paper [72] and by his interest in understanding bio-
logical computation®, e.g., in our nervous system'®. von Neumann’s
work was followed up in a sequence of works, including those of
Pippenger [66, 67], Taylor [77] (see also [78]), Hadjicostis [37], and
Hajek and Weller [40] who provided achievable strategies for spe-
cific operations. Taylor’s work started the area of decoding using
unreliable circuits, focusing on low-density parity-check codes of
Gallager, and allowing for errors in his iterative decoding algo-
rithm. This work has been followed up extensively recently, e.g.
Varshney [80], Vasic et al. [81, 82], Dolecek et al. [94, 46], with an
interesting recent work of Vasic showing that low-error rates in the
decoding implementation can help improve the performance of de-
coding. Pippenger’s work [66] not only provided achievable strate-
gies for linear computations, it also utilized work of Dobrushin and
Ortyukov [26] to lay down fundamental limits by tightening the da-
ta-processing inequality in the context of scalar random variables.
This direction on fundamental limits was extended and explored in
the works of Evans and Schulman [33], and Erkip and Cover [32]
on “quantified /strong” data-processing inequalities, that has led to
recent resurgence in this direction, with broadening of problems to
“information-dissipation” [68, 18, 6, 69].

In a deeply related but separate body of work, inspired by distributed
and parallel computing systems that have been implemented in the
last few decades, there has been significant work on addressing com-
puting under “processor” unreliability, where a processor is assumed
to be constituted by a large number of gates and attached memories.

“Shannon himself was examining the noisy computing problem at the
same time, focusing on unreliable relays [62].

"It is now widely believed that the brain indeed uses error-correcting
codes [73, 64] (his paper is titled “Probabilistic Logics and the Synthesis
of Reliable Organisms from Unreliable Components”). Whether it does so
to compute efficiently is far from established, although the thought
behind Barlow’s famous and controversial “Efficient Coding Hypothesis”
does suggest so [13].
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Add ressing processor unreliability is even today thought tobe “eneol
top md‘l.l“l‘ﬂ}:\"' inrt‘\.w'alvumipuh:u:‘ [59] (e, langers ale super

computing, whepe processors can vield undetectiad errors) Coding

theoretic work in this din tion was intiated by Huang; and Abraham
[47], who named it - Algorithm-Based Fault Toleranae € ABET), which
is today a thriving rosearch area with hundnads of papers (€8 6
49,37, 50]). These works provide thmigues of erm! cornytion for
ldl}',o-m\lc computing systems, indluding maodem -|||\'ru1mp||l|n;;
systems. A closely related application aned s ditrbuted llt‘l-lll u]rm-‘
puting systems, where unreliability mantfests atselt n the form s u\'-.
processing nodes (called stragylers), which signifie antly slow down ”“'
entire computation [23]. Use of coding tey hagues m cloud um]ult.ulul,
systems o address straggler bottlenechs was proneercd in the Il‘\('I‘.l

work of Lee et al. [56]. In [36], the authors demonstrated the ].n:l\\‘u:
of ABFT-like coding technigues for linear computations vid l“‘.“ g “
pected time-analysis based on exponential-tail maxdels of P""‘f"“?”}:
times, in addition to v\[\‘rtmvn!.ﬂ results, Interestingly, lhlv t:\l«l:t:ﬁ
techniques developed in the ABFT hiterature llll'ﬂ(.\lﬂ o bu." subopli .',_
in the sense of error/erasure-tolerance for operations .s}u !\ as m.\tr‘n

vector and matrix-matrix multiplication. Recent work in .mfm.'m.‘\lmn‘
theory has advanced on these constructions while obtaining, in some
cases, fundamental limits as well. For instance, for the }jmhlmj. (-]f 11‘;0‘
trix-matrix multiplication (Section 2.2), the ‘““'_l“ of Yu, A“"_"&.’“mttl “E
and Maddah-Ali [95] pmvidcs a coded mmpulm;,; cumtmcltmn 1’:1

they call “Polynomial coding,” that provides scahngjsunsc 1mpr0\ei
ments on ABFT by comparing ABFT’s performance with f.undame.nta‘
limits. This was followed by our own recent work [34] wh'lch prO\'l.dC‘a
scaling sense impro\'emel{ts on Polynomial codes. The information-
theoretic approach has much to offer.

More recently, coded computing results have been obtained for
convolutions [91, 31, 74, 95], solving lincar inverse problems afld
PageRank [92], distributed gradient descent [30, .75, 76, 70'. 41], lin-
ear regression and classification [36, 30, logistic regression [90],
distributed iterative optimization [51,10], and even scparablL" nlon-
linear functions [57), etc. For any computation that can be spllst into
tasks, optimized approaches have been proposed by Joshi, ‘/\for—
nell, and Soljanin, and collaborators [86, 48, 85,3, 4.1 for s.tragglmg
processors, which focus on problems of task allocation using rigor-
ous queuing-theoretic models. Coding techniques have also been
used to reduce communication requirements even when process-
ing nodes are completely reliable, and a notable work here is that
on “Coded MapReduce” by Li, Avestimehr, and Maddah-Ali [58].

In the following, we will discuss the development of the fielq frqm
the perspective of three key problems. In Section 2.1, we will dis-
cuss matrix-vector multiplication under processor level errors or
stragglers [47, 56, 30, 75, 76, 70, 41] as well as gate-level errors 16§,
93]. In Section 2.2, we will discuss advances in matrix-matrix multi-
plication, including recent works [47, 95, 34]. Finally, in Section 2.3
we will end with a recent coded-computing construction of Dutta
et al. [29] that connects back to the inspiration of von Neumann's
seminal work: the brain, This construction provides reliability to
large networks of the nonlinear McCulloch-Pitts neuron models
that are revolutionizing computing and inference systems today.

2.1. Coded Matrix-Vector Multiplication

The problem of computing linear transforms of high-dimensional
vectors is the critical step [22] in several machine learning and sig-
nal processing applications. Dimensionality reduction techniques
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T
such as o 1pal( omponent Analysis (1'C A), Lincar Iiscrimn

Analysis (DAY whing random : an

ojechions, ele, requine the o
putation of short and fat linear transtorms on high-dimeney,
data Finear transtorme are the bunlding blocks of solutiog v
various machine learning problems, e, regression and (!1: ,
cation ete, and are also used in acquinng and 1""'}‘““'55”', rwlll
data through, ey filtering, Fast and rehable computation of I;i]-l:]“I
ar

transforms are thus a necessity for low-lateng y inference [22)

Large processing nodes: The goal is to compute the product A f
matrix A with the vector y. We first discuss the case with “lan '{:,) the
cessing, nodes, where e, the memory-size of cach pmrw.iil" i
can scale with the problemesize. The first strategy here w.ﬁ hr: .
inthe .‘-l‘ll\'II‘I-ll \\‘nlrl-: of Huang and Abraham work on ABFT [-17;]“?“
iddea of using coding to mitigate the strageler effect in distribute By
tems was pioneered by [56], which used what R b IIl i
case of ABFT to speed up matrix-vector products, The .mlhu‘ e
show, both analytically (using models inspired from digyi =
tems) and experimentally (on Amazon's FC?2 cluster) t[.m‘ S-u’tt"dls ‘
sp(‘('d-tlph in expected overall computation time fﬂn’bp Ul‘ :?afllflc.1ng
using these techniques. The core idea of [56] is 1 oo 1ia|ned b
of the matrix A by multiplying it with the same Ht‘ncrua( N colum,
a linear code, resulting in a coded matrix A, N C “:»‘r Matrix of
the rows of the matrix A among different proc ‘-‘Ssi,n rL d”ﬂribu[ g
each node computes its own matrix-vector product' Bz’ Nodes, ang
combinations of codewords of a linear code are a1, "CAUSE Jingy,
resulting concatenation of outputs is alsg 5 ¢
computation can proceed without waiting for
by using erasure decoding to fill in for thejr

d 5y,

odeword,
afew gy
utputs,

Hence, the
3ggling nodeg

What if, due to communication or mem,

cannot even compute a whole dot pro, dﬁg:foz:tlznecks, each node
matrix A with the N x T vector y? Recently, oy, wo‘kaf ofan M x
Tandon et al. [75] (motivated by a different apP]iCatiOBO] aswellag
ously arrived at strategies for coding matrix-vector n’:) ;‘.m‘.‘"a,“‘-"
by encoding the matrix into a sparse coded matrix ;h iplication
that we call “Short-Dot” codes because they diStril;uteL;SQ codes,
trix-vector products to processing nodes th arge ma-

i at compuyt
products, are illustrated below through an ex amplep e short o

Consider a 2x4 matrix A= [a] alf =[ﬂ11 M2 ay gy

a2 an qy n“]mm‘a
4 X lvectory = (y,y2y3Ys)" . Can we compute Ay over p =
such that, (i) each node uses a shortened version ofy,ic.,at nro;r
four scalars yy, 25+, and (i) the overall computation is tolergy
straggler, i.c., 2 of the three nodes suffice to recover Ay? Shors.p

4 todes
”U‘(’e 0
ttoone

i . t
use the following strategy: Node i computes (a; + asi + sy i:olc;_d;s
4 50 that from any 3 of the 4 nodes, the polynomial p(x) = (ary +' a,y;;
2

+ zyx?) can be interpolated. Vector z = (21 2, 73, 2.) is chosen to satisfy
ani +iay + Fzi=0fori=1,2,3,4, so that node i does not require

To understand the performance of Short-Dot from a quantitative
perspective, consider a setting shown in Fig. 8 where each pro-
cessing/worker node stores" MN/m linear combinations of the
entries of A and N/# non-zero entries of y, Assume that P process-
ing nodes perform the computation, we use “recovery threshold”
K(m, 1)—the minimum number of processing nodes required by a
fusion node to recover the matrix-vector product Ay—to measure

""Although we use the word “store” in our descriptions, note that the restric-
tions on the amount of A and x need not be only due to memory overhead;
these restrictions may be motivated by communication costs as well
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its restlience. Note that the maximum number of straggling nodes
that a scheme can tolerate is P = K(m, n). K( 1,1) is clearly 1
and translates to a replication strategy. In the MDS code based

Ay

strategy of [56, 47], A is split as and node i e (1, 2,..., P)

An

computes (X},¢,A,)y, where G = (%)) forms the pene

! : : § generator ma-
trix of a (P, m) MDS code® The fusion node can recover Ay from
any m nodes, which gives K(m, 1) = m, Interesting]ly, going beyond
1 =1-thatis, using the full vector y at all nndc:-.——n\].uin‘s inlvrc'slin};
coding strategies as demonstrated by the above example, Short-Dot
obtains a recovery threshold of K(m,n) = (m/ny+P(1-(1/n));

via a converse result, this recovery threshold is i
: , this ) . s approximately op-
timal [28, 30]. iF b

In fact, the number of non-zero entries in the stored, coded sub-
matrix at each processing node is MN/nm since every row of the
coded matrix only has N/n non-zero entries at prv-;!vﬁm'd loca-
tions. Thus it requires even smaller memory than MN/m. The key
difference between Short-Dot and MDS codos is that Short-Dot al-
lows the vector y to be shorter than its full-length N, thus allowing
for cheaper communication of parts of y to each processing node
and computation of shorter dot-products at cach processing node
as compared to MDS code.

Concurrent work [75] also discovered gradient coding, which in-
corporates the essential coding idea of Short-Dot in the context
of a single dot product in an important application: distributed
gradient descent. In an iteration of distributed gradient descent
over data D = (Dy, D,..., Dp) where D, is the data stored in the
i-th processing node, the gradient update step requires each pro-
cessing node to to compute a gradient ¢(D,), which is used by a
master node to compute £/_,¢(D,). In [75], Tandon et al. view the
operation of a master node as a single dot-product of the vector
[11..1] with the vector [¢(Dy) g(D2) ... ¢(Dy)]. They use a coding
technique similar to Short-Dot to complete the iterations in pres-
ence of straggling worker nodes. They also introduce the notion of
partial stragglers, [75] which opens up new research directions by
modeling the fact that stragglers—unlike faulty nodes—eventu-
ally complete their operation and their outputs can be used in the
eventual computation.

A direct application of matrix-vector multiplication is solving
sparse linear inverse problems using iterative matrix-vector prod-
ucts, such as for finding eigenvectors of a matrix through, e.g., the
PageRank algorithm. What is new in these problems is that the
answer slowly converges to the true solution. The stragglers thus
simply have fewer iterations compared to fast nodes, but their out-
puts are still useful. In [92], we use a decoding algorithm inspired
by weighted least-squares to fully utilize the results from both fast
nodes and stragglers by assigning weights to different nodes based
on their proximity to convergence. Compared to erasure-coding
based coded computing, this coding method achieves graceful deg-
radation of remaining error with increasing number of stragglers.

2In fact, aggregating these coded matrices forms an MDS coded matrix,
Acued. However, we use the term A.oss more generally to denote a coded
version of the matrix A for an arbitrary linear code, not necessarily an
MDS code.
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Figure 8. System model.

Both theoretical and experimental results show substantial m:j:-
vantages of the proposed algorithm over replication _.-;chcmcs :
Surprisingly, if the ordinary matrix-inverse algorithm is u‘5cd for
decoding, the remaining error shoots up because MDS codlng ma-
trices appear to be ill-conditioned, which is also recognized in the
work of Haikin and Zamir [39, 38] on analog coding for erasure
channels. By carefully combining the (partial) results of the strag-
gling nodes (instead of ignoring them), we are able to circumvent
the difficulty of ill-conditioned matrix inverse and achieve orders
of magnitude reduction of remaining error in experiments.

Small processing nodes (i.e., single gates): When considering
models with gate-level errors, the cost of error-detection can be
significant, so it is important for the models to consider errors.
Further, the implementation has to be fully decentralized: decod-
ing itself can suffer from errors.

For this problem, the fundamental limits of “strong” data-process-
ing inequality provide an important intuition: along any single
“path” in the circuit, errors will accumulate, and information will
dissipate. This seems to present a pessimistic picture. Is there any
hope for reliable computation in the Shannon sense [72]? First,
note that the overall computation error-probability cannot be
lower than the error-probability of the last gate, so the best we
can hope for is that the overall error probability is close to the last
gate’s error probability. For the specific problems of binary matrix-
vector multiplication, our recent work [93] shows that even with
all gates noisy, this is achievable, and further, that sophisticated
error-carrection techniques that our community has developed of-
fer scaling-sense advantages.

To describe our technique, it is useful to first discuss a funda-
mental limit, namely, Lemma 2, in the work of Evans and Schul-
man [33]. They derive an upper bound on mutual information
between a binary input and the values carried by a set of wires
by accumulating mutual information across those wires. This
suggests an achievability: if the number of paths that a circuit
can keep accumulating information from keeps increasing as
the information dissipates along each individual path, it may

“lt is interesting that the diversity gain achieved by the replication strategy
here is smaller than that can be achieved in communications over random
fading channels, because the results at stragglers are deterministic func-
tions of those at fast nodes for the same inverse problem. Fundamental limit
on obtained diversity gains are worthy of further investigation.
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Figure 9. A comparison of attained error-probability by
our technique ENCODED with reptition/replication- type
approaches. ENCODED is able to keep errors bounded
even as the computation proceeds.

be possible to offset the losses with the gains, and keep errors
suppressed.

Our results [93] show that this is indeed attainable for computing a
binary linear transform Ay. To do so, we encode A, obtaining Acded
with coded columns, that is, each column is a codeword. The cod-
ing technique itself is a carcfully chosen LDPC code. Now, instead
of performing distributed do!-p'mducts of individual rows of Acued
with y, we perform scalar-vector multiplications of y, the i-th ele-
ment of y, with the i-th column of Awuw. Note that the resulting
scalar-vector product is a codeword itself. The key step is this next
one: we add these codeword vectors across different indice
tree architecture, and at every intermediate node in the tree, we em-
bed a noisy decoder (utilizing results from [94, 46]). These decod-
ers enable repeated error-suppression as the computation advances
(see Fig. 9), and the accumulation of information from various paths
enables the computation to compensate for information dissipation.
The resulting error probability is shown, through theoretical results
and simulations, to remain bounded by a constant throughout the
computation. Because the repeated error-suppression using embed-
ded decoders is a critical aspect of our strategy, we call it “ENcoded
COmputation with Decoders EmbeddeD,” or “ENCODED”).

s fina

2.2. Coded Matrix Multiplication

In this section, we focus on the problem of multiplying two N x N
matrices" A, B. Consider the setting where each processing node
stores N2/m linear combinations of the entries of A and N*/n linear
combinations of the entries of B. Assume that P processing nodes
perform the computation, we evaluate the straggler tolerance of a
technique by its recovery threshold K(m, n) of the technique. As be-
fore, K(1,1) is clearly 1, and translates to a repetition based strategy.

“We assume that both matrices are square for the sake of simplicity. The
results of this section apply for multiplication of matrices of arbitrary
dimension for mild assumptions on the matrix dimensions.
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Figure 10. ABFT matrix multiplication [47] for P=9
A
processing nodes with m = n = 2, where A IA:iB B B,

The recovery threshold is 6.

of the MDS code based strategy, which,
we call one-dimensional MDS coding, where Als c-ncu'd(-d using anq
MDS code gives Klm, 1) = similarly, mumlil'lj: B H'Y“ﬂK(l_, n) =y
We review here three strategics (i) ABIT matrix mlllllpll("\lmn (47)
(also called prmiru'h‘mh'd matrices in [55]), (i) |’_t )lynu_mml (,'n.d(ns I("SI
and (iii) MatDot codes [34] cach with sl:a't-h'_wlvl'ly improving, i,
smaller, recovery threshold. Rather than g0 into the technical (.
tails, we give three examples for the case where m =n = 2—ig,
cach processing node stores half nf A and half nf B—lhfﬂ conve

the ideas used. We begin by describing ABFT matrix multiplicatjo,

Example (ABFT Codes [47], Fig. 10, recovery-threshold = ¢) ¢,
sider two N x N matrices

. =
A=iAJB [B1 Bl

A natural generalization

Can we compute AB over P nodes such H_mf. (i) each node uses one lingg,
combination of A and one linear combination of B and (ii) the overall co,.
putation is tolerant to I? — 6 stragglers, i.e., 6 nodes suffice to recover AR?
ABFT codes use the strategy as per Fig. 10, where 4 of the 9 worker nog, es
compute Ai, B, i,jin{l,2| and the remaining worker nodes compute A(B
+ B2, (A1 + A)B;, (A + A2)(By + Ba) fori =1, 2 respectively. The gﬂrem;
principle of ABFT is to encode the rows of A and the colunns of B ysiy,

systematic MDS codes of dimension m, n respectively. 3

The question is whether the recovery threshold of 6 is optimal wag
addressed in [95], which gave the following, elegant, polynomial
code construction.

Example (Polynomial Codes [95], Fig. 11, recovery-thresholq
= 4) Consider fwo N x N matrices

A =[i;}3 =[B: B:]

can we compute AB over P nodes such that, (i) each node uses
one linear combination of A and one linear combination of B
and (ii) the overall computation is tolerant to P — 4 straggler,
i.e., 4 nodes suffice to recover AB? Polynomial codes use th;
following strategy: Node i computes (Ar + Azi)(By1 + Bai?), i =
1, 2, ... P, so that from any 4 of the P nodes, the polynomial
p(x) = (AiB1 + A:Bix+ A1B2x? + A Box’) can be interpolated.
Having interpolated the polynomial, the coefficient (matrices)
can be used

to evaluafe AB as =t A]Ba].

A2B A:B:

In [34], we improve upon the recovery threshold of polynomial
codes through a construction called MatDot codes. Unlike ABFT
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Figure 11. Polynomial Codes [95] with m = n = 2 where

P
= AJB =[B1 Ba]. The recovery threshold is 4.

and polynomial codes, MatDot splits the matrix A column-wise
and matrix B row-wise. )

Example (MatDot Codes [34] Fig. 12, recov
S ’ . ’ 'ery- =
Consider two N x N matrices e

A=[A, AiB =m

can we compute AB over P nodes such that, (i) cacl node uses one
linear combination of A and one linear combination of B and (ii) the
overall computation is tolerant to P - 3 straggler, i.e., 3 nodes suffice
to recover AB? MatDot codes use Hu'_fu[.’uw}r‘tq strategy: Node i com-
putes (Av+Axi)(B1i+B2), i=1,2, .. P sothat f}v;u. any 4 of the P
nodes, the polynomial p(x) = A B2+ (A B + AaBa)x + A:Bix® can
be interpolated. Having interpolated the polynomial, the product AB
is simply the coefficient of x, that is AB = A, B, + As B,

Infact,if m = 3 = o(V'P) then the recovery threshold of one dimen-
sional MDS, ABFT matrix multiplication, polynomial codes and
MatDot codes is respectively (—)(P),(-)((m—i)JF),(—)(:n”,(—)(;u).
There are differences between the schemes in terms of node com-
munication costs and decoding costs; these and other related as-
pects are described in [34]. [34] also shows how to apply these
ideas for multiplying more than two matrices, and genéraiizes
and unifies Polynomial codes and MatDot codes to “PolyDot”
codes that tradeoff between communication complexity and re-
covery threshold.

2.3. Coded Neitral Networks

Deep Neural Networks (DNNs) are being extensively used in
many inference applications. A DNN is a multilayer network of
artificial neuron models (first developed by McCulloch and Pitts),
where each layer performs a linear transform on its input vector
from the previous layer. Training of DNNs is extremely time-in-
tensive, and has two main steps: “feed-forward step” and “back-
propagation.” In the feed-forward step, after computing a linear
transform on the vector received from the laver to its left, each
layer performs scalar nonlinear computations on each element of
the vector that results from this linecar transform, and then for-
wards it to the layer on its right. In the back-propagation step,
the layer receives the back-propagated vector from a layer on its
right, and computes a linear transform before forwarding it to the
layer on its left. The vector received by a layer in the backpropa-
gation step is also used to update the layers’ linear transform in
preparation for the next iteration. An iteration consists of a feed-
forward step and a back-propagation step—including the linear
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Figure 12. Matdot Codes [34] with m = n= 2 where

A=A A:]B= 1:" The recovery threshold is 3.

transformation update—executed by all layers, where the first
layer receives a data point, and the last layer receives an evalua-
tion of a loss function, as their inputs. In this description, for the
sake of simplicity of exposition, we assumed that each iteration is
for a single data point.

The most computationally intensive step in the training and testing
of a DNN is a matrix-vector multiplication. However, a naive ex-
tension of ABFT techniques of coded matrix-vector multiplication
(e.g. [47, 56]) would require us to encode matrices at every training
iteration. This is because these matrices are updated at every itera-
tion. This overhead of encoding can be enormous, and comparable
to the cost of the computation itself, which is undesirable. How-
ever, our strategy—that we call CodeNei—is able to show that by
carefully weaving coding into the computation of DNN, we are
only required to code vectors (which is low complexity), and not
matrices, at every iteration. This enables encoding and decoding
on the fly. Suppose Wis the weight matrix at any layer of the DNN.
Then the most computationally intensive operation in the feed-for-
ward stage of the DNN is the matrix-vector product s = Wx where
x comes from the previous layer. Similarly in the back-propagation
stage, the bottleneck operation is the computation of vector-matrix
product ¢’ = "W where 8 comes from the next layer. Finally, in the
update step, the Wis updated as W — W+ uéx".

vectors into blocks as

We divide the matrices and

"\’n,u Wu,ll' i l.‘l‘u
Wio Wil™ 7l

beginning of training, the matrix W is coded and stored distribut-
edly (by paying a one-time cost) as follows:

W= and 8" =[87 &1]. In CodeNet, at the

Woo Woi Wo2 Wos
Wi Wia Wi W
chdod = __J.U 11 w 1.2 IIV 13

Wao WZ,I X X
Wiap Wi x b

where each block is stored in a different processing node, and ‘X’ is
simply denoting that no block exists at that location.

The straggler/error resilience for feed-forward and back-propagation
are obtained through standard ABFT-type MDS coding, the difficulty
is in maintaining the coding of the weight matrices even as they are
updated because encoding the matrix at each iteration is computa-
tionally expensive. We now explain the strategy in a bit more detail,
first discussing feed-forward and back-propagation steps, and then
discussing how the coding is maintained in the update step:
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For the feed-forward stage, one only uses the first two columns
as tollows: :

S0 Woo W, Wooxe+ Woin
sif Wi Wy, Wioxo + Wi
si T |Wao War [T | Waono+ Wiy
83 W Wy Wioxe + Wax

One can use decoding techniques similar to coded matrix-vec
tor multiplication to get back s, and si from the 4 coded vectors
{s0,51,5,51) under errors or stragglers. Similarly, for the back-
propagation stage, one can only use the first 2 rows of the coded
matrix as follows:

e Qe ar|Wee W W Wy
S e al Wio Wip Wix Wia
(SLT‘ ‘Vllt' 61‘)‘““ (51'; Wl‘?

51 Wo l
+3T Wi +01 Wi '*J:ﬁ'-l: +8I Wi

Now, from the 4 coded vectors {¢l, ¢, ¢b ¢}, one can decode cd and
ci under errors and stragglers. This ensures that both forward com-
putation and back-propagation are resilient to errors. Importantly,
by weaving coding in this manner, every sub-matrix is able to up-
date itself at each iteration without the need to encode matrices afresh:

Suppose, Wz = Woo+ Waa. For the update step, if the processing
node only has two vectors: S and coded vector X2 = xo+ X1, then
it can update itself as

Wll! + ,L((')nig = Woo +ﬂ(§‘o.‘l‘{| + Wy + ﬂau.\'f .
— N
Updated Woo Updated Woy
The recovery threshold of this strategy can be improved by utiliz-
ing more sophisticated codes, and will appear in [29].
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